Ex) Article Title, Author, Keywords
Ex) Article Title, Author, Keywords
Original Article 2018-03-31
2018-03-31
0
587
390
So Hyun Park, Jinhyun Choi, JinSung Kim, Sohyun Ahn, Min Joo Kim, Ho Lee, Seo Hee Choi, Kwangwoo Park
https://doi.org/10.14316/pmp.2018.29.1.1
The TomoTherapy® beam-delivery method creates helical beam-junctioning patterns in the dose distribution within the target. In addition, the dose discrepancy results in the particular region where the resonance by pattern of dose delivery occurs owing to the change in the position and shape of internal organs with a patient’s respiration during long treatment times. In this study, we evaluated the dose pattern of the longitudinal profile with the change in respiration. The superior-inferior motion signal of the programmable respiratory motion phantom was obtained using AbChes as a four-dimensional computed tomography (4DCT) original moving signal. We delineated virtual targets in the phantom and planned to deliver the prescription dose of 300 cGy using field widths of 1.0 cm, 2.5 cm, and 5.0 cm. An original moving signal was fitted to reflecting the beam delivery time of the TomoTherapy®. The EBT3 film was inserted into the phantom movement cassette, and static, without the movement and with the original movement, was measured with signal changes of 2.0 s, 4.0 s, and 5.0 s periods, and 2.0 mm and 4.0 mm amplitudes. It was found that a dose fluctuation within ±4.0% occurred in all longitudinal profiles. Compared with the original movement, the region of the gamma index above 1 partially appeared within the target and the border of the target when the period and amplitude were changed. Gamma passing rates were 95.00% or more. However, cases for a 5.0 s period and 4.0 mm amplitude at a field width of 2.5 cm and for 2.0 s and 5.0 s periods at a field width of 5.0 cm have gamma passing rates of 92.73%, 90.31%, 90.31%, and 93.60%. TomoTherapy® shows a small difference in dose distribution according to the changes of period and amplitude of respiration. Therefore, to treat a variable respiratory motion region, a margin reflecting the degree of change of respiration signal is required.
Original Article 2018-03-31
2018-03-31
3
1245
497
Jeongmin Yoon, Kwangwoo Park, Jin Sung Kim, Yong Bae Kim, Ho Lee
https://doi.org/10.14316/pmp.2018.29.1.8
This work reports the acceptance testing and commissioning experience of the Robotic Intensity-Modulated Radiation Therapy (IMRT) M6 system with a newly released InCise™2 Multileaf Collimator (MLC) installed at the Yonsei Cancer Center. Acceptance testing included a mechanical interdigitation test, leaf positional accuracy, leakage check, and End-to-End (E2E) tests. Beam data measurements included tissue-phantom ratios (TPRs), off-center ratios (OCRs), output factors collected at 11 field sizes (the smallest field size was 7.6 mm×7.7 mm and largest field size was 115.0 mm×100.1 mm at 800 mm source-to-axis distance), and open beam profiles. The beam model was verified by checking patient-specific quality assurance (QA) in four fiducial-inserted phantoms, using 10 intracranial and extracranial patient plans. All measurements for acceptance testing satisfied manufacturing specifications. Mean leaf position offsets using the Garden Fence test were found to be 0.01±0.06 mm and 0.07±0.05 mm for X1 and X2 leaf banks, respectively. Maximum and average leaf leakages were 0.20% and 0.18%, respectively. E2E tests for five tracking modes showed 0.26 mm (6D Skull), 0.3 mm (Fiducial), 0.26 mm (Xsight Spine), 0.62 mm (Xsight Lung), and 0.6 mm (Synchrony). TPRs, OCRs, output factors, and open beams measured under various conditions agreed with composite data provided from the manufacturer to within 2%. Patient-specific QA results were evaluated in two ways. Point dose measurements with an ion chamber were all within the 5% absolute-dose agreement, and relative-dose measurements using an array ion chamber detector all satisfied the 3%/3 mm gamma criterion for more than 90% of the measurement points. The Robotic IMRT M6 system equipped with the InCise™2 MLC was proven to be accurate and reliable.
Original Article 2018-03-31
2018-03-31
1
1502
435
Minsoo Chun, Hyun Joon An, Seong-Hee Kang, Jin Dong Cho, Jong Min Park,ΙΙ, Jung-in Kim
https://doi.org/10.14316/pmp.2018.29.1.16
Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.
Original Article 2018-03-31
2018-03-31
2
872
398
Sangwook Lim, Kyubo Kim, Sohyun Ahn, Sang Hoon Lee, Rena Lee, Samju Cho
https://doi.org/10.14316/pmp.2018.29.1.23
The purpose of this study is to build a database of patient information for efficient radiotherapy management. Microsoft Office Access was used to build the database owing to its convenience and compatibility. The most important aspect when building the patient database is to make the input and management of patient information efficient at every step of radiotherapy process. The information input starts from the patient’s first visit to the radiation therapy department and ends upon completion of the radiotherapy. The forms for each step of radiotherapy process include the patient information form, the radiotherapy schedule form, the radiotherapy information form, the simulation order form, and the patient history form. Every form is centrically connected to the radiation oncology department’s patient information form. A test revealed that the database was found to be efficient in managing patient information at each step. An important benefit of this database is improved efficiency in radiotherapy management. Information on patients who received radiotherapy is stored in a database. This means that this clinical data can be found easily and used in future, which will be helpful in research studies on the radiation oncology department. Benefits such as these will potentially contribute to improved radiotherapy quality.
Original Article 2018-03-31
2018-03-31
2
970
406
Jang-Hoon Oh, Hyug-Gi Kim, Dong-Cheol Woo, Sun Jung Rhee, Soo Yeol Lee, Geon-Ho Jahng
https://doi.org/10.14316/pmp.2018.29.1.29
The objective of this study was to evaluate the chemical exchange saturation transfer (CEST) effect of amino acids and neurotransmitters, which exist in the human brain, depending on the concentration, pH, and amplitude of the saturation radiofrequency field. Phantoms were developed with asparagine (Asn), γ-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI). Each chemical had three different concentrations of 10, 30, and 50 mM and three different pH values of 5.6, 6.2, and 7.4. Full Z-spectrum CEST images for each phantom were acquired with a continuous-wave radiofrequency (RF) saturation pulse with two different B1 amplitudes of 2 μT and 4 μT using an animal 9.4T MRI system. A voxel-based CEST asymmetry was mapped to evaluate exchangeable protons based on amide (–NH), amine (–NH2), and hydroxyl (–OH) groups for the five target molecules. For all target molecules, the CEST effect was increased with increasing concentration and B1 amplitude; however, the CEST effect with varying pH displayed a different trend depending on the characteristics of the molecule. On CEST asymmetric maps, Glu and MI were well visualized around 3.0 and 0.9 ppm, respectively, and were well separated macroscopically at a pH of 7.4. The exchange rates of Asn, Glu, BABA, and Gly usually decreased with increasing pH. The CEST effect was dependent on the concentration, acidity of the target molecules, and B1 amplitude of the saturation RF pulse. The CEST effect for Asn can be observed in a 9.4T MRI system. The results of this study are based on applying the CEST technique in patients with neurodegenerative diseases when proteins in the brain are increased with disease progression.
Technical Report 2018-03-31
2018-03-31
2
981
434
Kwang Hwan Cho, Jae Hong Jung, Chul Kee Min, Sun Hyun Bae, Seong Kwon Moon, Eun Seog Kim, Sam Ju Cho, Rena Lee
https://doi.org/10.14316/pmp.2018.29.1.42
The purpose of this study was to perform a survey of the radiation shielding design goals (
pISSN 2508-4445
eISSN 2508-4453
Formerly ISSN 1226-5829
Frequency: Quarterly